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SUMMARY 
This paper describes a versatile finite difference scheme for the solution of the two-dimensional shallow 
water equations on boundary-fitted non-orthogonal curvilinear meshes. It is believed that this is the first 
non-orthogonal shallow water equation model incorporating the advective acceleration terms to have been 
developed in the United Kingdom. 

The numerical scheme has been validated against the severe condition of jet-forced flow in a circular 
reservoir with vertical side walls, where reflections of the initial free surface waves pose major problems in 
achieving a stable solution. Furthermore, the validation exercises are designed to test the computer model 
for artificial diffusion, which may be a consequence of the numerical scheme adopted to stabilize the shallow 
water equations. The model is shown to be capable of simulating the flow conditions in'an irregularly shaped 
domain typical of the geometries frequently encountered in civil engineering river basin management. 
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1. INTRODUCTION 

In the past two decades the numerical modelling of rivers, estuaries, harbours and reservoirs has 
usually been undertaken using Cartesian grid finite difference discretizations of the shallow water 
equations. In the U.K. most models are based on the work of Falconer,'.' who derived his 
approach from that of Leendert~e.~ Unfortunately, Cartesian grid schemes have the disadvantage 
that it is difficult to model curved perimeters accurately. Leendert~e,~ Abbott et aL4 and Hodgins' 
approximated the curvature of the boundary by using a staircase of points to follow the 
perimeter. An alternative method, utilized by Kuipers and Vreugdenhi16 and Falconer,'. ' also 
employs a stepped pattern to follow the curved boundary, but unlike the Leendertse approach 
where the staircase straddles the flow domain, the hydraulic region is located entirely within the 
numerical grid. Interpolation has to be used to redistribute the fluid in the boundary regions so 
that overall fluid mass is conserved. In either case, unnecessary (or spurious) vorticity may be 
generated at each of the boundary nodes. Moreover, in Cartesian schemes it is relatively difficult 
to concentrate extra grid refinement in zones of interest. At first sight it may appear that finite 
element methods are ideally suited for this type of application. However, as discussed by Weare,' 
the large bandwidth of the global stiffness matrix employed in the finite element methodology 
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means that the technique is computationally less efficient than corresponding finite difference 
schemes. 

Boundary-fitted co-ordinate systems provide an approach which combines the best aspects of 
finite difference discretization with the grid flexibility usually attributed to finite element proced- 
ures. In essence, a coupled pair of elliptic equations is solved to generate the grid, the governing 
flow equations are rewritten in curvilinear form and then discretized using finite differences ready 
for solution by computer. The idea behind boundary-fitted systems originated in the U.S. 
aerospace industry in the early 1970s as a response to NASA's requirement to predict high- 
velocity flow patterns around irregularly shaped space vehicles. Since then, boundary-fitted 
systems have been utilized for the solution of a wide variety of fluid dynamic problems in 
aeronautical and mechanical engineering. Surprisingly, even though numerical grid generation 
techniques have been thoroughly documented, few publications are as yet available concerning 
the solution of the two-dimensional shallow water equations using curvilinear co-ordinates. The 
earliest studies on the complete transformed non-linear shallow water equations were conducted 
by Johnson and co-workers'-'' in the United States. Other curvilinear models include Hauser et 
d ' s  and Raghunath et d . ' s  numerical scheme for the linearized shallow water equati0ns.l'- l 3  

WijbengaI4* l 5  and Willemse et d . l 6  of Delft Hydraulics in The Netherlands have developed an 
alternative computational approach requiring an orthogonal curvilinear mesh. 

At the onset of any numerical investigation using boundary-fitted techniques it is necessary to 
decide whether the co-ordinate system should be orthogonal or non-orthogonal. The former 
method is attractive since Cartesian solution procedures for the governing hydrodynamic 
equations can be modified with little additional effort. However, the orthogonality constraint 
during mesh generation severely limits the distribution of co-ordinate lines around complex 
topographical features such as headlands and bays. On the other hand, non-orthogonal grid 
systems allow more flexibility in the internal grid point distribution but have the drawback that 
the governing equations of motion are considerably more complex than their orthogonal 
counterparts. In the present study the ability to stretch and distort the internal grid nodes without 
placing any restriction on the disposition of the boundary grid points was judged to be sufficient 
incentive to tolerate the disadvantages of using a non-orthogonal mesh. 

It is the purpose of this paper to describe a primitive variable shallow water equation solver for 
arbitrary non-orthogonal meshes. The model has been designed specifically for flow prediction in 
shallow watercourses of irregular shape. It consists essentially of two modules: the first generates 
the non-orthogonal grid within the prescribed flow domain, the second solves the transformed 
non-linear shallow water equations in a stable and non-diffusive manner. 

2. METHODOLOGY OF GRID GENERATION 

The initial step consists of producing a boundary-fitted grid of the physical flow domain; this is 
achieved using the elliptic grid generation technique proposed by Thompson et ~ 1 . " ~  '' A pair of 
Poisson equations is used to define the mapping from the physical domain to the transformed (or 
'computational') plane: 

5,x + t,, = P(5, v), 
rxx + vyy = Q ( L  v). 

(14 

(W 
The weighting functions P and Q (described in detail by Thompson et a1.l') cause the physical 
co-ordinate lines to concentrate as desired; they are often useful to counteract grid skewness and 
excessive cell size variation in regions of large boundary curvature. Since all numerical com- 
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putations are to be performed in the transformed plane, the system of Poisson equations in (1) 
must be rewritten in terms of the computational co-ordinates (l, q). It can be shown that the 
dependent and independent variables can be interchanged to give 

where 
2 2  2 a=x, +Y,, P=xp,+YyY,, Y=x:+Yc 3 

and J = xg y, - x, ys is the Jacobian of the transformation. 
The quasi-linear elliptic equations given in (2) relate the physical co-ordinates (x, y) of the mesh 

points to the transformed co-ordinates (t, q). Although the transformed expressions are more 
complex than equations (la) and (lb), boundary conditions can now be specified along the 
straight edges of the computational domain. This permits the accurate use of finite difference 
techniques for numerically solving the grid generation equations. The mapping expressions 
shown in (2) are rewritten as finite differences and then solved iteratively using a successive 
over-relaxation procedure. Furthermore, all subsequent hydrodynamic computations are also 
performed in terms of the (<, q)  co-ordinate system. 

3. CARTESIAN GOVERNING HYDRODYNAMIC EQUATIONS 

Assuming the location of the bed is constant with time (i.e. there is no sediment deposition or 
erosion), the depth-averaged continuity equation for a Cartesian reference frame is given by 

where x and y are the horizontal co-ordinates, t is the time, [ is the surface elevation above an 
arbitrary datum, D = h + [ is the local water depth, where h is the distance between the bed and the 
datum, and U and V are depth-averaged velocity components. 

The non-conservative depth-integrated momentum equations in the x- and y-direction respect- 
ively are given by 

where p is the fluid density, g is the acceleration due to gravity& is the Coriolis parameter, zw and 
z b  are wind and bed friction stresses and G,, Z y  and Tyy are effective stress components (as defined 
by Kuipers and Vreugdenhi16). 

Implementation of the Boussinesq eddy viscosity concept allows the effective stresses to be 
written as 

av 
Zx=2pF,-, Ky=pF, -+- , T,,=2pFt-, (: ::) a Y  

au 
ax 

where v ,  is the eddy viscosity coefficient and the overtilde indicates that the variable is not a true 
depth-averaged quantity but is a value which produces the appropriate depth-integrated stress 
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when inserted into equation (5). In the present study two methods have been used to evaluate the 
eddy viscosity coefficient, namely constant and depth-averaged eddy viscosity models. 

A constant eddy viscosity approach is utilized for validation purposes because it enables direct 
comparisons with data from alternative Navier-Stokes simulations at low Reynolds numbers. 
Alternatively, a simple algebraic depth-averaged eddy viscosity relationship can be employed to 
determine the spatial distribution of C,, namely 

~ 59D&(U2 + Vz)1/2 v, = 9 

C 

where C is the Chezy coefficient. The definition of Ct in equation (6) is based on the proposition by 
Kuipers and Vreugdenhi16 that the eddy viscosity is of the same order of magnitude as the 
longitudinal diffusivity of dye in an open channel. The above expression was also utilised by 
Falconer,' who allowed the eddy viscosity to vary across the flow field in accordance with the 
local velocity vectors. As Kuipers and Vreugdenhil point out: the most questionable assumption 
about the formula arises from the fact that momentum can be transferred by surface elevation 
gradients, whereas there is no comparable mechanism for the transport of matter in the 
dispersion equation. 

The components of bed shear stress (Tbx and Thy) are related to the depth-averaged velocity 
components via a quadratic friction law, 

(7) - Tbx - - Cf U(U2 + VZ)"2, -_ T b y - C f V ( U Z +  YZ)"2, 
P P 

where cf is an empirical friction coefficient which depends upon the bottom roughness. For 
smooth beds the friction coefficient is determined solely by the Reynolds number and can be 
approximated from the formula presented by Schlichting" for open channel flow, 

114 
cf = 0-027 (&) , 

where v is the coefficient of kinematic viscosity and R is the hydraulic radius of the channel 
cross-section. With rough beds cf can be determined either from the Chezy friction law, 

9 
C c r = 2 ,  

or alternatively from Manning's equation, 

n2g 
C f = D 1 / 3 '  

where C is the Chezy coefficient and n is the Manning roughness factor. 

(9) 

4. TRANSFORMED GOVERNING EQUATIONS 

Since the numerical computations are performed on a non-orthogonal mesh, it is necessary to 
convert the previously presented Cartesian formulae into transformed equations written in terms 
of the boundary-fitted co-ordinates ( and q. Following the work of Johnson,**' Johnson et al.," 
Hauser et U I . " ~ ' ~  and Raghunath et ~ l . , ' ~  only the independent variables (x, y)  are transformed. 
This overcomes the difficulties associated with the unwieldy diffusive terms which are encoun- 
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tered when implementing contravariant/covariant velocity techniques on non-orthogonal co- 
ordinate systems." 

The transformation of the Cartesian shallow water equations is accomplished using the non- 
conservative derivative relationships presented by Thompson et d.," 

wherefdenotes a differentiable function of x and y .  
Substituting the above expressions into all partial derivatives involving x or y in the governing 

Cartesian equations of motion leads to the depth-averaged continuity equation being recast as 

whilst the non-conservative momentum relationships are rewritten as 

) :( :: ::) au at J Y : a? av at 
au au au -+- y,u--yygu-+xygv--x,v- -fcV+- yq--ye-- 

av 

The effective stress equations are also transformed into the (5,  q)  co-ordinate system: 

5. NUMERICAL SCHEME 

The transformed governing equations (12)-(14) were discretized on a staggered (5 ,  q )  grid and 
solved using a semi-implicit alternating direction finite difference scheme. In contrast to the 
earlier work of Johnson and co-workerss-10 and Hauser et U Z . ~ ~ ~ ' ~  where the U- and V-velocity 
components were placed at the same location, the present velocity variables were fully staggered 
as illustrated in Figure 1. Although this arrangement requires additional spatial averaging, the 
advantage of the present layout is that the scheme reverts to a standard Cartesian discretization 
whenever a uniform orthogonal grid aligned with the co-ordinate axes is employed. 
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X 

Figure 1. Cell definition 

In order that the geometric derivatives (xt, xq, y5 and y,) could be specified at the cell centres 
and the cell mid-faces, the co-ordinate mesh for the required flow domain was generated with 
twice as many cells in each direction than the number required for the eventual hydrodynamic 
mesh. Two interrelated spatial indexing systems were formulated: i and j refer to the variables U ,  
V, i, h and D, whilst I and J define the location of the geometric variables. This split system 
ensures that the arrays used to store the hydrodynamic variables are of the minimum possible 
size. Simple arithmetic expressions can be used to 'translate' between indexing systems. For 
example, referring to Figure 2, if the x-momentum equation is to be updated at position Ui, j ,  then 
the transformation derivatives applicable to this particular point are stored at the fine grid 
location I = 2 i ,  J = 2 j -  1. 

A t  and Aq are defined as the distances in the transformed domain between the velocity vector 
positions. Since the range of the co-ordinates 5 and q in the computational plane is completely 
arbitrary, the mesh increments A(- and Aq are specified, for convenience, as unity. Consequently, 
the geometric variables are defined on a finite difference mesh with cell increments of 0.5. 

A further index, n, is now introduced to denote the time level of the discretized hydrodynamic 
variables. The alternating direction algorithm splits each time step into two intervals. In the first 
half-time step, derivatives with respect to ( are advanced from t=nAt  to t=(n++)At  whilst 
derivatives involving q are held at t = nAt. In the second directional 'release', (--derivatives are held 
at t = ( n + i ) A t  whilst q-derivatives are advanced from t = ( n + i ) A t  to t = ( n +  1)At. Non-derivative 
expressions (e.g. bottom friction and the Coriolis term) are evaluated at t = ( n  + +)At for both 
stages of the cycle. The procedure can be demonstrated with respect to the transformed 
x-momentum equation (13a). 

Step 1: (-direction release 
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Step 2: q-direction release 

1 6 (D zy)n + 
-xc 6q 

The symbol 6 represents a second-order finite-difference approximation. 
By adding the above equations for the two half-time steps, it can be shown that the combined 

effect of Steps 1 and 2 results in an equation which is fully centred in time, provided that each term 
is evaluated at the correct time level. As a consequence, the AD1 scheme has a formal temporal 
accuracy of At 2. However, because the non-orthogonal hydrodynamic equations contain approx- 
imately twice as many terms as their Cartesian counterparts, it is not possible to achieve 
second-order accuracy in time using a single AD1 cycle because certain terms have to be lagged in 
order to achieve a closed solution. Thus second-order temporal accuracy can only be achieved via 
an iterative technique which obtains improved estimates for the otherwise lagged variables. 

5.1. Control o j  non-linear instability 

The inclusion of the non-linear advective acceleration terms in the x- and y-momentum 
equations will often produce destabilizing effects in the numerical scheme. These instabilities are 
most troublesome when modelling hydraulic regimes with strong recirculating regions and low 
values of eddy viscosity coefficient. Non-linear instabilities lead to severe grid scale oscillations of 
the velocity field (which eventually overwhelm the true numerical solution) and are caused by the 
discretization process preventing the transfer of turbulence energy to eddies smaller than the 
resolution of the computational mesh. Central difference approximations of the non-linear 
accelerations are the most unstable form of differencing and can only be used in conjunction with 
large values of eddy viscosity coefficient. Therefore the present numerical simulation employs 
a second-order upwind differencing technique based upon proposals by Stelling,21 Stelling and 
WillemseZZ and Willemse et a l l 6  The treatment of the advective acceleration terms eliminates 
grid scale numerical instabilities whilst minimizing artificial viscosity. It should be noted that the 
non-orthogonal transformation procedure of the present numerical scheme precludes the use of 
Stelling's original shallow water equation technique, which is only valid for orthogonal co- 
ordinate systems. 

All spatial derivatives in the transformed momentum equations are approximated by central 
differences except for the cross-advective terms. For the x-momentum equation (13a) these are 

whilst for the y-momentum equation (13b) the cross-advective accelerations are 
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Figure 2. Diagrammatic representation of semi-implicit numerical scheme: transformed (5,  q) plane 
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The terms shown above are evaluated either as weighted central differences or as second-order 
(i.e. quadratic) upwind differences, depending upon the particular stage of the computational 
scheme. For example, in the (-direction release the cross-advective terms in the x-momentum 
equation are both calculated using weighted central differences, i.e. 

(174 
au 
81 

YS U-=Y< u(SD2,u +3Di,  u )  

where D1,, U is the 'standard' central difference approximation to aU/aq (evaluated over two grid 
increments) and D2qU is the central difference approximation to aU/@ (evaluated over four grid 
increments). Thus 

and similarly 

where the overbar indicates that the hydrodynamic variable is obtained by four-point averaging. 
During the v]-direction release (Step 2) the x-momentum cross-advective terms are differenced 

using a combination of weighted central and quadratic upwind expressions. Since the boundary- 
fitted co-ordinate meshes are generated with the y- and v-co-ordinate axes in the same approxim- 
ate direction, the cross-advective term xt VaU/aq can use the sign of the V-velocity component to 
determine the direction of the upwind finite difference expression for aU/aq. On the other hand, 
the derivative y6 UaU/aq is calculated using a weighted central difference formula because the 
U-velocity direction is approximately normal to the q-direction. Consequently, the cross-advec- 
tive derivatives during the q-direction release are discretized as 

and 

The same principle is employed for the y-momentum cross-advective components: Step 1 uses 
upwind differencing for the term y ,  UaV/a{ and weighted central differences for x,, VaV/a{ whilst 
Step 2 employs weighted central differences for both these terms. 

5.2. Numerical discretization 

For brevity, only the {-direction AD1 discretization of the x-momentum equation will be 
presented. A more detailed discussion of the computational scheme can be found in Reference 23. 
During the (-direction release all derivatives with respect to { are written at the advanced time 
level t = (n +*)At  whereas derivatives involving q are held at t = nAt. All non-derivative expres- 
sions (e.g. bottom friction and the Coriolis term) are also evaluated at the advanced time stage. 
Thus the transformed x-momentum equation for the first half-time step may be discretized and 
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rearranged to give 

-a .  a , ]  .[!'?f/2 1.1 + b i , j U i , j  n + 1 / 2 -  C i , j l i + I , j  n + l / 2 -  - k i , j ,  

where 

+ x,~,, P"'1/2 UD1"' ' I 2  +gyy,,,ZETAD") +fc V"+' l2  - Fbx + Fwx + T, . ) 
Here JAC denotes the Jacobian in order to avoid confusion with the spatial index J and 

(weighted central difference approximation to d Ujaq), 
~ + 1 / 2 =  V , l f " 2 +  p + 1 / 2  n+112 n +  1 / 2  

i + ~ , j  + v i + l , j - l +  J'i,j-I 

4 , 

- V{j+ v:+1,j+ V / + l , j - I +  VCj-1 V"= 
4 9 

i t  j +  1 +C;+ 1 , j + 1 - 5 ?  j -  1 -(?+I, j - 1  

4 
ZETAD" = 3 

n + 1 / 2  
z w x  

wx pD1 ' 
F =- 

T1 =Ytl,.,(D;:,:'jZ T x x i + l . j  n + 1 / 2 _ D c f 1 / 2  T n + 1 / 2  xxi,, 1 9  

T2 = - Y51.1 B CSDl ( T ! X j ,  j + l +  C X j +  1. j +  1) - SDW!Xj. j - 1 +  T!xi+l, j -  1 )I 9 

T3 = X51.1 Q [SD 1 ( q y i ,  j +  + T&+ 1, j + , I  - S D 2 ( T ! Y j ,  j -  1 + T!y,+ ,. j -  1 11 7 

T4=-x ( D n + 1 / 2  T " + 1 / 2 - D [ ; 1 / 2  T " + 1 / 2  
%,I * + I A  X Y ~ + I . ,  XYi,j 1 9  

T l+T4  T2+T3 q=---- (-+-) D2 . 
pJACI,J D1 

The right-hand side of equation (20) contains advanced U -  and V-velocity components in the 
terms UD1"+'/2, vn+1/2 and Fbx ,  together with advanced effective stress components in T,. 
Furthermore, the coefficient bi, j  involves UD1"+"2, which is also at the new time level. Conse- 
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quently, the temporal accuracy of the scheme may be improved by using an iterative technique to 
obtain better estimates for these otherwise lagged variables. 

The continuity equation is discretized in a similar manner with the exception that the 
expression is centered on the surface elevation positions instead of the U-velocity positions. The 
x-momentum and continuity equations for a line of constant 7 are grouped together to form 
a tridiagonal matrix system which is then solved implicitly (represented by the horizontal dashed 
line in Figure 2). Once the advanced U-velocity components and surface elevation values have 
been evaluated for every 7-line, the transformed y-momentum equation is solved explicitly to give 
the advanced V-velocities (this is shown diagrammatically in Figure 2 by the horizontal dotted 
line). 

The second half of the AD1 cycle is accomplished in a complementary fashion to the first: 
?-derivatives are expressed at the new time level t=(n+ 1)At whilst gradients with respect to 
( and non-derivative expressions are held at t = (n ++)At. The y-momentum and continuity 
equations are grouped together along each t-line to form tridiagonal matrix systems which are 
solved implicitly, whereas the x-momentum expression is solved using a straightforward explicit 
discretization. 

5.3. Boundary conditions 

In conventional Cartesian schemes the staggered grid structure requires special treatment 
along the perimeters of the flow domain since velocity components and surface elevations need to 
be defined outside the boundary  wall^.^,^,^ In the present investigation a novel boundary 
approach has been adopted. Here the boundary curve passes through the surface elevation 
positions and perimeter values of ( are calculated from an explicit discretization of the continuity 
equation at the start of every half-time step. This technique has several advantages. 

(a) The usual procedure of setting the normal derivative of surface elevation to zero at the 
boundaries is avoided and therefore the gradient of ( automatically adjusts itself at the wall 
to suit the hydraulics of the situation. Consequently, wind stress effects can be modelled 
more accurately. 

(b) The effective stresses are correctly evaluated along the perimeter of the flow field via 
second-order forward/backward finite difference expressions. 

(c) The values of surface elevation along the boundary obey the continuity equation during 
transient flow phenomena. 

Since the accurate simulation of momentum transfer in recirculating flows requires the use of 
no-slip constraints at the lateral b~undaries,'~ it was decided that the present computational 
scheme should employ no-slip conditions along all solid walls. Thus the velocity boundary 
conditions are 

UIw,, = - ULw- I,] > Kw,, = 0, U,JW = 0, K , I w  = - KJW - 1 3 (21) 
where the subscripts i, and j, refer to grid points at the wall and i, - 1 and j ,  - 1 are adjacent 
points within the flow domain. 

Wall surface elevations are calculated from the transformed continuity equation using the fact 
that U ,  = = 0 along a 5 = constant boundary and U ,  = V, = 0 along an q = constant boundary. 
Referring to a 'right-hand' 5 =constant boundary, for instance, the explicit finite difference 
expression which results is 
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where I=2iW- 1, J=2j-1 and 

uxI"=u,"w,j- uc-1,j (central difference approximation), 

(backward difference approximation), 

(two-point averages are used to 
centre the V-velocities at the 
surface elevation/depth nodes). 

L 

V;-l , j+ Vt-1,j-I 
2 

V;-2,j+ Vt-2,j- l  

2 

Vy = 

Vz" = 

The only modification required for a 'left-hand' t=constant boundary is the use of a forward 
difference quadratic approximation for VXI. Similar finite difference formulae are employed for 
determining the advanced surface elevations along q = constant walls. 

5.4. Digital filtering 

The occurrence of instabilities in boundary-fitted shallow water equation simulations appears 
to be a common fault of the method. For example, Johnson' had to use large values of eddy 
viscosity coefficient in order to prevent an unbounded growth of grid scale oscillations swamping 
the numerical solution. Hauser et ~ l . , ' ~  in a numerical study of the linearized shallow water 
equations for a boundary-fitted mesh representative of a tidal harbour, found that their computa- 
tional scheme became unstable after approximately 15 000 time steps (equivalent to about 24 h of 
simulation). In this latter case the destabilizing influences could not be attributed to the advective 
acceleration terms since they were not included in the discretization. Hauser et al. were unable to 
offer an explanation for the instabilities and merely stated that they could not be eliminated by 
spatial filtering techniques. 

In this investigation stability problems were encountered in the form of a gradual growth in 
surface elevation oscillations for low values of eddy viscosity coefficient; these grid scale 
variations in surface elevation were eventually transmitted to oscillations in the velocity field. At 
first this instability was attributed to the imperfect time centring of the advective acceleration 
terms. However, the problem could not be eliminated by the use of an iteration technique to 
calculate the advanced non-implicit variables and therefore it was concluded that the instabilities 
were caused by the boundary conditions. 

had little success with spatial filtering procedures, a second-order 
recursive temporal filter was employed to eliminate the high-frequency surface elevation noise. 
The scheme adopted by Butlerz5 to control non-linear instabilities in a Cartesian shallow water 
equation simulation was found to be particularly effective for the present investigation; this 
involves applying a lowpass smoothing filter to damp the high-frequency oscillations at the end of 
every half-time step. In the present scheme the temporal filter is applied to all primary hydro- 
dynamic variables, i.e. [, U and V. With reference to the surface elevation [, the recursive digital 
filter can be expressed as 

Since Hauser et 

[ n + 1 / 2 = a i 1 + l / z + b [ " + c [ " - ' / z ,  (23) 
where [?+1/2 represents the latest water level calculated by the AD1 algorithm, ( n + 1 / 2  is the 
filtered surface elevation value which is used in subsequent flow calculations and a, b and c are 
coefficients which are chosen to damp the high-frequency oscillations such that 

a + b + c = l .  (24) 
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In order to allow the longer-period wave motions to remain almost undisturbed, the coefficient 
a should be as close to unity as possible. Numerical experimentation can be used to select the 
values of the coefficients in the recursive filter. After studying a wide range of parameters, ranging 
from (a, b, c) = (089,O-1,001) to (04,04,0.2), Butler25 chose the coefficients to be a = 06, b = 0.3 
and c = 0.1; the same parameters are also used herein. 

The filter shown in equation (23) undoubtedly introduces false diffusion into the numerical 
scheme during transient flow phenomena. If the hydrodynamic solution tends to steady state, 
however, the effects of the recursive filter become unimportant since the hydrodynamic variables 
will change even more slowly with time as the equilibrium condition is approached. 

6. RESULTS 

Accurate comparative data from independent studies are necessary in order to validate the 
computer model. Although field data from river and estuary flows have been widely reported in 
the literature, very accurate measurements are expensive and difficult to achieve, bearing in mind 
the organizational problems involving labour and equipment. For the purposes of the studies 
presented here, data from analytical, alternative numerical and small-scale experimental invest- 
igations were compared with predictions from the computational model. The results are pres- 
ented in three subsections, the first dealing with Pteady uniform flow in an open rectangular 
channel, the second considering jet-forced flow in a circular reservoir and the third examining 
flow in an arbitrarily shaped watercourse. The first two subsections involve comparisons with 
analytical and alternative numerical models and hence provide benchmark tests for the model. 
The final subsection demonstrates the versatility of the boundary-fitted technique by examining 
the flow in an irregularly shaped domain. 

6.1. Validation against steady uniform flow in a rectangular channel 

Following Wijbenga,14 the numerical model was used to simulate steady uniform flow in 
a parallel-sided channel using a deliberately distorted numerically generated co-ordinate mesh. 
The channel was assumed to be 1000 m long by 240 m wide, with a constant water depth of 5.0 m. 
The bed slope was specified at 1 in 1000, the Chezy roughness coefficient was taken as 
41.42 mli2 s-' (following Wijbenga) and the eddy viscosity coefficient was set to zero. In contrast 
to all other simulations presented here, slip boundary conditions were applied to the side walls 
of the flow domain. Besides altering the velocity boundary conditions, the specification of slip 
walls along the sides of the channel required the finite difference discretization of the continuity 
boundary condition to be modified. Assuming that the channel walls are formed from 
q =constant lines and provided that the co-ordinate system is generated with the slip boundaries 
parallel to the x-axis, then the following conditions may be invoked along the side walls of the 
flow field: 

Substituting the above expressions into the transformed continuity equation (12) leads to the 
surface elevation boundary condition (for the 4 =constant walls) being recast as 

Inflow and outflow velocity conditions were stipulated as dU/ax =O and aV/ax = 0. 
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(a) Physical mesh A 

L 

(b) Velocity vectors  at steady-state 

(c) Surface elevatlon contours at steady-state 
(metres  above downstream boundary) 

Figure 3. Uniform flow in a rectangular channel (after WiJk~nga'~) 

Figures 3(a) and 4(a) illustrate the 81 x 21 node (40 x 10 flow cell) co-ordinate meshes used in 
the validation exercise. The co-ordinate systems are representative of those utilized by 
Wijbengai4 but are generated so that the grid lines are non-orthogonal. The flow simulations 
were started from an initial condition U = V= 0, but in order to reduce the computation time, the 
initial surface elevation profile was specified as having the same slope as the bed so as to avoid 
large transient free surface oscillations. Using a time step of 5 s, the numerical scheme converged 
to equilibrium after approximately 5000 s of simulation time. The velocity vectors in Figures 3(b) 
and 4(b) show that the flow field is uniform throughout the channel, even though, at first 
inspection, there is an optical illusion of curved flow due to the location of the velocity vectors at 
the curvilinear grid points. In fact, the flow features may be better represented by plotting 
interpolated contours of surface elevation as indicated in Figures 3(c) and 4(c). Here the contours 
are equispaced parallel lines, indicating a linear drop in surface elevation along the channel (with 
the same slope as that of the bed), which is expected for uniform flow conditions. Furthermore, 
the predicted velocities show excellent agreement with the Chezy friction law for normal channe1 
Aow, 

U = C(DSo) ' :2  =41.42 x (5 x 10-3)1/2 =2.9288 m s - l ,  (27) 
where C is the Chezy coefficient, D is the flow depth and So is the bed slope. 
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Figure 4. Uniform flow in a rectangular channel for a more distorted non-orthogonal mesh 
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Figure 6. Transverse U-velocity profile at section halfway along channel 

In order to demonstrate the truncation errors in the numerical scheme, Figures 5 and 6 present 
the transverse surface elevation and U-velocity profiles at a section halfway along the channel (i.e. 
500 m from the upstream inflow boundary). The diagrams indicate that the discretization errors 
become larger as the co-ordinate mesh becomes more distorted. However, even for the more 
distorted of the two meshes, the maximum error in surface elevation at the halfway section is less 
than 0.05 mm whilst the maximum error in the U-velocity component is less than 0.005 m s-’. 
These errors are considerably smaller than those presented by WijbengaI4 for his orthogonal 
curvilinear shallow water equation solver. This is probably due to the grid arrangement in which 
the geometrical derivatives (xy, x9, y e  and y , )  are evaluated at every flow variable position 
whereas Wijbenga’s scheme requires some of the geometrical derivatives to be found from 
two-point interpolation. The main drawback with the present double-mesh system is that the 
numerical mapping data require four times the storage capacity of Wijbenga’s algorithms. 

Finally, it should be noted that the small numerical errors depicted in Figures 5 and 6 imply 
that it is satisfactory to generate boundary-fitted meshes which have quite large cell size 
variations between adjacent nodes. 

6.2. Validation against jet-forced$ow in a circular reservoir 

The prediction of jet-forced flow in a vertical-walled flat-bottomed circular reservoir provides 
an excellent opportunity to test the discretization of the non-linear terms of the transformed 
shallow water equations. In this case two-dimensional analytical solutions are available for 
jet-forced flow in a circle as well as results from alternative numerical studies and experimental 
data. Three separate circular reservoir geometries were investigated: Dennis’s circular container 
with inlet and outlet placed opposite each other in a symmetric fashion,26 Mills’ geometry with 
asymmetric alignment of inlet and outlet ” and the laboratory investigation/Cartesian grid 
numerical model studied by Falconer.’.’ For brevity, results are only presented for the first of 
these geometries; a more detailed intercomparison of jet-forced flow patterns in circular reservoirs 
is presented by Barber.23 

Figure 7 illustrates the 121 x 121 node (60 x 60 flow cell) boundary-fitted co-ordinate system 
utilized in the present study. The parallel-sided inlet and outlet channels were placed diametri- 
cally opposite each other and were designed so that the openings into the circular reservoir 
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Figure 7. Boundary-fitted co-ordinate system representative of Dennis's symmetrical geometryz6 

subtended an angle of n/15 rad (as measured from the centre of the circle). This is representative of 
the geometry used by Dennisz6 for the numerical investigation of low-Reynolds-number jet- 
forced flow inside a circle. Dennis did not include inlet or outlet channels and so did not allow for 
boundary layer effects at the entrance or exit. The circular basin was assumed to have a diameter 
of 1.5 m, a depth of 0.1 m and an inflow velocity of 0.1 m s-'. No-slip boundary conditions were 
applied to the perimeter walls of the flow domain and the bed friction coefficient cf, was set to 
0.003. The hydrodynamic simulation employed a time step of 0025 s, corresponding to a Courant 
number of approximately 2.5. A constant eddy viscosity of 7.84 x mz sC1 was utiiized across 
the entire domain, leading to an inlet Reynolds number Re,, based upon the eddy viscosity 
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coefficient of 10.0. The inlet Reynolds number is defined in an identical manner to Mills,27 i.e. 

where Ut  is the mean inlet velocity, E is half the angle subtended by the inlet, R,, is the radius of the 
reservoir and C, is the horizontal eddy viscosity coefficient. Steady state was attained after 
approximately 20 000 time steps. 

Instead of depicting the circulation using the velocity vector distribution, the flow pattern 
within the reservoir is better represented by contouring values of numerically integrated depth- 
averaged streamfunction. The main advantage of this approach is the elimination of an optical 
illusion of flow following the grid lines which is caused by plotting the velocity vectors at the 
nodes of the curvilinear co-ordinate grid. Figure 8(a) illustrates the scaled streamfunction 
contours at steady state determined from the present boundary-fitted primitive variable (U ,  V, () 
scheme, whilst Figure 8 (b) presents the corresponding circulation patterns calculated using 
a finite difference solution of the streamfunction/vorticity-transport ($, o) equations in polar form 
on an algebraically stretched orthogonal mesh.28*29 A part from slight discrepancies near the 
centre of each gyre, the contours depicted in Figure 8(a) are almost identical to those obtained 
from the ($, o) simulation. Comparison of the circulation patterns reveals that there is also close 
agreement between the throughflow streamfunction contours. Moreover, the positions of re- 
attachment of the separation streamlines ($ = 00  and tj = 2.0) are very similar. It can therefore be 
concluded that the quadratic upwind differencing methodology (introduced in the discretization 
of the curvilinear transformed shallow water equations) causes little additional numerical diffu- 
sion compared with the central difference advective scheme used by Borthwick and 
for solving the vorticity transport equation. 

6.3. Arbitrary river geometry 

This final subsection demonstrates the versatility of the curvilinear co-ordinate technique by 
examining the flow in an arbitrarily shaped watercourse with a highly contorted perimeter. In 
order to demonstrate that the boundary-fitted shallow water equation solver is capable of 
predicting large-scale jet-forced flow phenomena typically encountered in real life studies, the 
physical mesh shown in Figure 9 represents a 1.5 km long section of river. The mesh consists of 
121 x 31 nodes (60 x 15 flow cells). Numerical experimentation demonstrated that it was benefi- 
cial to generate the boundary-fitted system using the control functions P and Q. Without the use 
of these weighting functions the elliptic grid generation equations tended to produce excessively 
large grid cells in regions of strong concave boundary curvature and very small cells in the vicinity 
of strong convex boundary curvature. 

The irregular bathymetry employed in the study is illustrated in Figure 10, which shows the bed 
contours in metres below the horizontal datum. It can be seen that the depths vary from 0.5 m at 
the no-slip perimeters to a maximum of approximately 3.0 m in the centre of the flow domain. 
The velocity in the narrow inflow jet was set to 0.5 m s- l ,  the Chezy roughness coefficient was 
assumed to be 45 mliz s-' across the entire flow field and the Coriolis parameter was specified as 
f , =  1.19 x 

The magnitude of the eddy viscosity coefficient J,, is critical in determining the resultant 
circulation patterns. As well as controlling the size and strength of secondary flow phenomena, 
the eddy viscosity affects the transfer of momentum between the main river channel and the 
shallower flow areas near the banks and therefore influences the transverse velocity profile across 
the river. In a numerical study of the flow patterns in a fast-flowing river with a wide flood plain, 

corresponding to a latitude of 55" N. 
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Figure 8. Streamfunction contours at steady state (Re,= 10.0) 

Vreugdenhil and Wijbenga3' considered eddy viscosities in the range from 5.0 to 1.0 mz s-' and 
calibrated their model by comparing the computed longitudinal surface elevation profile against 
experimental field data. In the present simulation the flow velocities are an order of magnitude 
smaller than those considered by Vreugdenhil and Wijbenga and therefore the eddy viscosity is 
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( a )  Transformed ( C  , q )  plane  

Lenglh scale: - 200m 

( b )  Physical ( x , y )  plane  

Figure 9. Boundary-fitted system for arbitrary river geometry 

Figure 10. Bed topography for arbitrary river geometry (metres below horizontal datum) 

expected to range between 0.5 and 0.1 m2s-l. Three separate flow simulations were performed, 
with constant eddy viscosity coefficients of 1.0, 0.5 and 0.25 m2s-l .  

Figure 11 illustrates the predicted steady state velocity distributions across the entire flow 
domain, while Figure 12 details the circulation patterns in the vicinity of the inflow jet. It is 
evident that the magnitude of the eddy viscosity coefficient has a dramatic effect upon the level of 
recirculation in the river. For example, at an eddy viscosity of 1.0 m2 s - l  Figure 12(a) indicates 
that the lower recirculation zone is very weak and only extends about 200 m downstream of the 
separation point. However, with an eddy viscosity of 0.25 mz s-' (Figure 12(c)) the lower gyre is 
more prominent and stretches approximately 500 m from the separation point. The increased size 
of the recirculating eddies is closely related to the reduced divergence of the fast inflow jet. 
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Figure 11. Velocity vectors at steady state 

A further flow simulation using an eddy viscosity of 01  m2 s- was attempted, but it was found 
that the numerical scheme suffered from severe surface elevation instabilities, even when the 
coefficients of the digital filter had been altered to (a, b, c)=(0.2,0*5,0.3). It was found that the 
instabilities were due to excessive cell Reynolds numbers in the inflow jet; consequently, the only 
method to investigate flows with lower values of eddy viscosity is by increasing the resolution of 
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Figure 12. Detail of velocity structure in the inflow jet 
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the finite difference mesh. In order to demonstrate that the lower limit of the eddy viscosity 
coefficient is not too severe compared with other numerical schemes, it is worthwhile considering 
the cell Reynolds number at the centre of the inflow boundary. In this case 

U = 0 5  ms-', A x z 2 0 m  

and therefore the longitudinal cell Reynolds number for the stable (Ct =025 m2 s-')  simulation is 

Similarly, the unstable (Ct =0.1 m2 s-  ') computation is associated with a cell Reynolds number of 
approximately 100. The upper limit of R,z40 in the present scheme compares favourably with 
other numerical discretizations using curvilinear grids (e.g. Reference 3 1). 

7. CONCLUSIONS AND RECOMMENDATIONS 

This papef- has demonstrated the feasibility of implementing a non-linear shallow water equation 
solver in conjunction with a non-orthogonal curvilinear co-ordinate system. The present numer- 
ical formulation uses Cartesian velocity components as dependent variables and solves the 
transformed shallow water equations using a semi-implicit alternating direction finite difference 
scheme. It has been found that a combination of weighted central and second-order upwind 
difference approximations is required for the cross-advective acceleration terms of the mo- 
mentum equations in order to achieve a stable discretization. Nevertheless, stability problems are 
still encountered when low values of eddy viscosity and severe mesh distortion prevail, and it has 
been found necessary to treat these instabilities with a second-order digital lowpass smoothing 
filter. 

The results indicate that the boundary-fitted shallow water equation approach offers a flexible 
computational method for predicting the hydrodynamic conditions in awkwardly shaped flow 
regimes and it is envisaged that the technique could therefore provide water resources engineers 
with a powerful alternative to patched/nested finite difference methods. Boundary-fitted tech- 
niques are ideally suited to studying flow domains with narrow-channelled inlets or outlets since 
the co-ordinate system can be made to expand smoothly away from the confined area. This is in 
contrast to patched finite difference schemes which undergo a sharp transition in mesh size 
between grid domains. 

In the future, boundary-fitted co-ordinate systems may offer the intriguing possibility of 
accurately modelling flows in estuaries where there are large changes in the cross-sectional area of 
the flow during each tidal cycle. Conventional techniques for dealing with changes in wetted 
plan-form area using flooding/drying cells can often produce troublesome oscillations in water 
surface elevation at mesh points near the boundary. Time-dependent boundary-fitted co-ordinate 
systems in which the grid constantly adapts to the changing shape of the wetted perimeter may 
overcome this difficulty by removing the need for a floodingldrying technique entirely. However, 
as yet, no published research has been presented along these lines. 
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APPENDIX: NOMENCLATURE 

coefficients of digital second-order filter 
Chezy roughness coefficient 
bed friction coefficient 
total water depth, D = h + [ 
Coriolis parameter 
scalar variable used in demonstration of spatial derivative transformation proced- 
ure 
acceleration due to gravity 
bed elevation below arbitrary horizontal datum 
finite difference indices for hydrodynamic variables 
finite difference indices for geometric variables 
Jacobian 
Manning roughness coefficient or time step index 
weighting functions for grid generation equations 
hydraulic radius 
cell Reynolds number 
bed slope 
time 
effective stresses 
depth-averaged velocity components in x- and y-direction respectively 
orthogonal co-ordinates in physical plane 

coefficients of transformed grid generation equations 
time step 
grid spacing in physical plane 
water surface elevation above arbitrary horizontal datum 
fluid kinematic viscosity 
‘depth-averaged‘ eddy viscosity coefficient 
non-orthogonal curvilinear co-ordinates 
fluid density 
bed shear stress components in x- and y-direction respectively 
wind shear stress components in x- and y-direction respectively 
streamfunction 
vortici ty 
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